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SUMMARY 
The Navier-Stokes-Boussinesq equations governing the transport of momentum, mass and heat in a non- 
isothermal liquid bridge with a temperature-dependent surface tension are solved using a vorticity-stream- 
function formulation together with a non-orthogonal co-ordinate transformation. The equations are 
discretized using a pseudo-unsteady semi-implicit finite difference scheme and are solved by the AD1 
method. A Picard-type iteration is adopted which consists of inner and outer iterative processes. The outer 
iteration is used to update the shape of the free surface. Two schemes have been used for the outer iteration; 
both use the force balance normal to the free surface as the distinguished boundary condition. The first 
scheme involves successive approximation by the direct solution of the distinguished boundary condition. 
The second scheme uses the artificial force imbalance between the fluid pressure, viscous and capillary forces 
at the free surface which arises when the boundary condition for force balance normal to the surface is not 
satisfied. This artificial imbalance is then used to change the surface shape until the distinguished boundary 
condition is satisfied. These schemes have been used to examine a variety of model liquid bridge situations 
including purely thermocapillary-driven flow situations and mixed thermocapillary- and bouyancy-driven 
flow. 
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1. INTRODUCTION 

The computation of solutions to the steady free boundary problem of mixed thermocapillary- and 
buoyancy-driven convection in a non-isothermal cylindrical liquid bridge is complicated by the 
strongly non-linear boundary conditions at the unknown free surface. Most studies to date have 
avoided the computation of the free surface shape and assumed that the liquid surface is a circular 
cylinder'-6 or have imposed a non-circular cylindrical surface shape.7 These models have 
involved either half-zone configurations (where the liquid bridge is held between rigid disks of 
different temperature) or full zones (where the liquid bridge is held between two solids of equal 
temperature). The full zone models are motivated by the floating zone crystal growth process.' 
Recently, Duranceau and Browng have approached the full zone crystal growth problem using 
the finite element method and have computed the shape of the liquid surface as well as the 
melt-crystal and melt-feed rod surfaces together with interacting thermocapillary and buoyant 
convective flow. Lan and Kou" have also approached the full zone problem using a finite volume 
method but restricted their calculations to the zero-gravity case for which the surface deformation 
from the circular cylindrical shape is minimal and buoyancy-driven flow is absent. Hyer et al." 
have used a finite element method, which is well suited to irregular geometries, to compute 
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interacting thermocapillary and buoyant convective flow in full and half-zone configurations but 
did not consider solidification. 

Recently, finite difference methods have been used to solve problems with free and moving 
boundary geometries using various mapping techniques. lZ These methods are also applicable to 
the free boundary problem associated with liquid bridges and floating zones. Kang and Leali3 
used the finite difference method with orthogonal boundary-fitted co-ordinates to study the 
deformation of a bubble. The boundary-fitted mapping scheme requires the solution of a coupled 
set of Laplace equations to determine the new grid to be generated at each outer iteration. 

In the present investigation the governing equations are recast in terms of a vorticity-stream- 
function formulation together with a non-orthogonal co-ordinate transformation. The latter 
allows an irregular free boundary to coincide with a co-ordinate line (or surface) without the need 
to solve a coupled set of Laplace equations. The resulting equations are discretized using 
a pseudo-unsteady semi-implicit difference scheme and solved by the AD1 method. The combina- 
tion of the above methods provides a reasonably accurate and economical solution procedure. 
Four boundary conditions are specified at the free surface: the kinematic boundary condition, the 
balance of energy across the surface and the balance of force normal and tangent to the surface. 
The energy balance, tangential force balance and kinematic conditions at the free surface are 
solved together with the Navier-Stokes and continuity equations, while the normal force balance 
condition is distinguishedi4 to determine the free surface shape. In addition, an ‘outer’ iterative 
procedure is needed to locate the free surface. In this paper two outer iterative schemes are 
reported. The first scheme involves successive approximation by the direct solution of the force 
balance normal to the free surface. The second scheme, after Ryskin and Leal,I5 uses the force 
imbalance between the fluid pressure, viscous and capillary forces at the free surface which arises 
when the boundary condition for force balance normal to the surface is not satisfied. This 
artificial imbalance is used to drive the surface shape towards its equilibrium position (i.e. until 
the force balance condition is satisfied). These schemes are used to examine a variety of model 
liquid bridge situations including purely thermocapillary-driven flow situations and mixed 
buoyancy-thermocapillary-driven flow. 

2. FORMULATION OF THE PROBLEM 

2.1. Governing equations 

Consider a cylindrical liquid bridge (see Figure 1) held between two parallel coaxial circular 
rigid disks of radius Ro separated by a distance L. The liquid is a non-isothermal incompressible 
Newtonian fluid. The bridge is held between the disks by surface tension. The free surface of the 
bridge is a gas-liquid surface and the steady surface shape is described by r = R(z). Each disk is 
maintained at a constant temperature To. Surface heating is provided through an ambient 
temperature T,(z). Radiative and convective heat transfer at the free surface are accounted for by 
a heat transfer coefficient h. In addition, we assume that the gravitational acceleration is parallel 
to the cylinder axis and that the velocity, temperature field and the deformation of the free 
surface are axisymmetric. Furthermore, we let the surface tension at the free surface vary linearly 
with temperature and assume that the Boussinesq approximation holds. 

The governing equations are made dimensionless by scaling length, time and velocity with Ro, 
Ro /U*  and U* respectively. Here U *  is a characteristic velocity given by 
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Figure 1. Liquid bridge model 

where AT= T,,,- Tmin represents the maximum temperature difference at the surface, ( y J  is the 
absolute value of the derivative of the surface tension with respect to temperature and p is the 
dynamic viscosity. 

We shall refer to a ‘half-zone’ model when the end disks are held at the maximum and 
minimum temperatures respectively and a ‘full zone’ when the temperature maximum occurs 
between the disks. For a full zone we shall take the ambient temperature T,(z) to be parabolic 
and take T,,, to be T,  (0) and Tmin to be T( k A/2), where A = L/Ro is the aspect ratio. 

The non-dimensional pressure is 

P* + P O P  Ro, 
P o u * 2  

P =  

where p* is the dimensional pressure, g is the gravitational acce€eration, z is the dimensionless 
axial co-ordinate and p o  is the density corresponding to the reference temperature. The temper- 
ature is rendered dimensionless using T,,, - Tmin. With these scales the dimensionless steady 
state equations in a cylindrical co-ordinate system can be written as 
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where the Reynolds number Re, Marangoni number M a  and Grashof number Gr are respectively 

9 B A m  Gr=- 
v2 - 

RoU* I Y I A TRO Re=- ,  MU=------, 
V w 

Here v is the kinematic viscosity, K is the thermal diffusivity, B is the volumetric thermal 
expansion coefficient and g is the gravitational acceleration. 

2.2. Boundary conditions 

At the disks the boundary conditions are 

u = w = T = O  at z=+A/2, 

and the symmetry conditions at the centreline r=O are 

aw aT u =- =-= 0. 
ar ar 

The boundary conditions at the free surface r = R ( z )  take the form 

where 

are the capillary number, Biot number and dimensionless gravitational acceleration respectively 
and yo is the mean surface tension. The force balances at the free surface in the normal and 
tangential directions are given by equations (7) and (8) respectively. Equation (9) is the kinematic 
boundary condition at the liquid-gas surface. The thermal boundary condition at the surface is 
given by equation (10) with the dimensionless heat transfer coefficient Bi. The constant ;1 on the 
left-hand side of (7) represents a dimensionless reference pressure difference' across the surface. In 
liquid bridge model systems with fixed rigid disks such as the one discussed here, A is determined 
by the constant volume constraint 

A/2 

- A12 
nR2(z)dz-constant. (11) Vo= j 
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Finally, the condition that the contact lines between the liquid end disks are fixed is 

R = l  at z=- tA /2 .  (12) 

3. NUMERICAL METHOD 

For the case of a two-dimensional axisymmetric flow the governing equations can be simplified 
by introducing the streamfunction $ and vorticity o as new dependent variables: 

From (13), (14), (2) and (3)  one obtains for o 

Substitution of (13) into (14) yields 

The original set of three equations governing mass and momentum has thus been reduced to two 
equations governing the streamfunction and vorticity. 

The steady free boundary problem for a cylindrical liquid bridge is solved iteratively, since the 
location of the free surface is a priori unknown. To obtain a solution, we adopt a Picard iterative 
procedure12 as follows. 

1. 
2. 

3. 
4. 

5 .  

Guess the free surface shape for the initial iterate. 
Obtain the approximate temperature and velocity fields by transforming the governing 
equations and boundary conditions to a circular cylindrical domain via a non-orthogonal 
transformation and solve them using a pseudo-unsteady semi-implicit method. 
Obtain the pressure at the free surface by integrating the transformed momentum equation. 
Use the normal force balance condition at the free surface to decide how to update the free 
surface location. 
Return to step 2. Repeat until convergence is obtained by satisfing all equations and 
boundary conditions to a specified degree of accuracy. 

The details of this numerical procedure are discussed below. 

3.1. Non-orthogonal transformation 

rectangular computational region using a non-orthogonal co-ordinate transformation, i.e. 
At each outer iteration the region occupied by the liquid bridge is transformed into a fixed 

.. 
+-L 

R(z, 7) * 
v = z ,  

For each iteration time z this transforms the domain 

- 1\12 < z < A/2, O < r < R ( z , z )  
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- A12 < z < A/2, 0<(<1. 

It then follows that 

a a y a ~ a  
-+----- 

a i a  
dr R ay’ az all R all ay‘ -+- - 

The advantage of this transformation is that the free boundary coincides exactly with a co- 
ordinate line in a computational grid and regeneration of mesh during the outer iteration is 
avoided. The transformed governing equations now take the form 

where 

-+A-+B-+C- 
a + a T  a + a T  1 aZT a2T aT 
all ay ay all M a  all ayZ ay 

aZ+ a2+ a+ a Z +  

a+ a p  a( allaC-R[w, 

- 

- + A  -+B* -+C-- 

The boundary and symmetry conditions (5)-(10) are now: 

at q = 1212, 

1 a 2 +  *=o, o=--, r allz 
T=O; 

at i = O ,  

+=o, o=o, aT/ay=o; 

at C =  1, 

1 [- 1 ---(--- aT aR aT 1 - aRaT -)]+B,(T-T,,,)=O, 
(1 +(aR/aq)Z)1/2 R ay all all R all ay 
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2Re-’ [ I  au 
(:).(a, 

1 aR a,) a R (  1 aw au 1 aR au 
1 +((aR/aq)2 R ay aq R aq ay all R ay all R a? ay 

--+ - _ _ _ _ -  _ _  --+ __--- p - G v + A -  

1 ( i+(aR/aq)2 -- a2R) 
[I + ( a ~ / a ~ ) ~ ] ~ / ~  R all2 . 

= Re-’(C;’ - T )  

Equations (24) and (25) are the kinematic condition for the surface (i.e. the condition that a point 
on the surface remain on the surface) and the balance of tangential forces respectively. The 
complete streamfunction, velocity and temperature fields can be determined for a given axisym- 
metric surface shape (e.g. starting with an initial guess) using only (19)-(26). Then, as long as the 
balance-of-force condition (27) is not well satisfied, the force balance residual provides a basis for 
determining an improved estimate of the free surface shape. This procedure continues until the 
convergence criteria (to be defined later) are satisfied. 

3.2. Solution method 

Various methods can be devised to obtain a steady solution of equations (19H26). For the sake 
of simplicity a pseudo-unsteady method in association with a semi-implicit time discretization is 
used. 

We first consider the following system of equations: 

-+ L1--V2 T+S1=0, 
aT aT ( S a  ) 
~ + ( L z - ~ v 2 ) o + s 2 = o ,  aT 

a* --V*2$ aT + S 3  =o, 

where 

We then 
clarity we 

(3 1) 

(32) 

(33) 

(34) 

(35) 

(36) 

a2 a2 a 
VZ =-+A - + B- 

a l l2  at2 a ( ’  
a2 az a 
all2 ay2 a i ’  

V*’=-+A-++B*- 

a2w Gr 1 aT s I -  ---c- Ma 1 
alla[’ a2T s2=% ( a-c-)+--- allay Re2 R ay’ 

S3 = - C  -+ a2+ R[w. 
all ac 

proceed to solve this system as the (pseudo) time derivatives of T, $ and 040. For 
present the solution method only for the vorticity (0) transport equation. The 
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discretization in time employs an explicit Adams-Bashforth scheme for the non-linear convective 
terms and the implicit scheme for the viscous terms. Other terms in the equation are treated 
explicitly. For spatial discretization, central differences are used. The AD1 form for the vorticity 
equation is then 

Here the superscript n + 1/2 denotes the intermediate step associated with the AD1 method.I6 The 
velocities of (25) (at the nth step) are taken from the values at the previous step. Thus, except for 
the thermal condition at the free boundary, these are Dirichlet boundary conditions. The heat 
transfer equation is also discretized in an AD1 form. The resulting system of discretized equations 
is solved using a factorization method.16 

We define a steady state to occur when the residuals (ao/at, dT/ar, at,b/at) of the vorticity, 
energy and streamfunction equations are less than loW7, i.e. 

Here F represents the vorticity, temperature or streamfunction, the subscript refers to the spatial 
location and the superscript refers to the iterative step. The numerical solution is second- 
order-accurate in space. 

We have verified this solution method for steady 2D axisymmetric incompressible flow. Table I 
shows four examples of a comparison between the results of our code and a finite element code 
(FIDAP): two for buoyancy- and two for thermocapillary-driven flow. Figure 2 shows a com- 
parison of the surface velocities using our method and the finite element method. One sees that 
the numerical method described here provides a reasonably accurate algorithm for computing 
steady 2D axisymmetric incompressible flows in rigid cavities and for mixed buoyancy- and 
surface-driven flows with free boundaries for the range of surface Reynolds numbers examined, 
0 <Re <21740. 

Having computed the vorticity and streamfunction for a given surface shape, it remains to 
iterate on the condition for the force balance normal to the surface in order to obtain the final 
steady surface shape. In addition, the shape must satisfy the volume constraint (1 1) and boundary 
conditions (12). 

Table I. Comparison of finite difference method with results obtained using finite element code FIDAP 

This method FIDAP 

A Pr Ra Re Wrnax urnax W,,, urn, 
2 1 100 0 1-81 x lo-’ 4.27 x lo-’ 1.80 x lo-’ 4.28 x lo-’ 
2 1 150 0 2.84 x lo-’ 664 x lo-’ 2.66 x lo-’ 664 x lo-’ 
2 0.0127 0 3150 3.39 1.7 349 1.82 
5.2 0.0127 0 5905 2.95 1.33 2.78 1.29 
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Figure 2. Comparison of surface velocities calculated for Re = 3150, Cr=O and Pr =0.0127 using FIDAP and our method 
(N, x N,=25  x 49) 

Two iterative schemes for determining the surface are discussed in this section. In both schemes 
the new velocities and temperatures are taken from the current calculated values and the pressure 
at the surface can be obtained by taking the rpcomponent of the momentum equation and 
integrating with respect to q. This yields 

Scheme I is based on the following principle. A shape is assigned to the free surface with the 
calculated pressure, velocity and temperature. An initial guess for the pressure constant I is 
made. The new surface shape is then determined directly from (27)using finite differences in con- 
junction with Newton's method. The integral (1 1) is then evaluated to check whether the 
volume constraint has been satisfied. If it is not satisfied, an inner iteration is made using a 
Newton-Raphson procedure to calculate the following improved estimate of 1: 

where 

The above procedure for determining I is quite effective and is repeated until the volume 
constraint is satisfied. R(q) is then updated. New velocity, pressure and temperature fields are 
calculated using the updated value of R(q). The outer iteration is repeated until 

where we took E =  

Scheme 11, after Ryskin and Leal,' uses the residual of the force balance condition normal to 
the surface to drive the shape to its steady position. This is equivalent to equating the residual 
with an artificial capillary force. This effective force causes a local displacement of the surface in 
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the direction of the force. The magnitude of the local displacement is proportional to this force. 
The surface shape at each iteration is thus modified so as to reduce the residual until condition 
(27) is met. It follows that at each iteration the new position of the surface is given by 

~ y +  = ~ j ”  + U E X ~ ,  (44) 

where Exj is the residual of the force balance equation at the jth surface location and the constant 
coefficient ci is determined by numerical experiment. In order to ensure convergence, ci should be 
small. If ci is chosen to be too small, the convergence is slow and the amount of CPU time used 
increases substantially. If ct is too large, the solution will diverge. We found that the values of 
ct which led to rapid convergence depend on the product of Re- and C; (see Table 11). 

The change in volume between the mth and (m + 1)th iteration can be found from the volume 
constraint (1 1) and equation (44) and neglecting higher-order terms, i.e. 

The pressure constant A is contained in Exj and is obtained by satisfying (45). Even then the liquid 
bridge may still change the volume slightly at each iteration owing to numerical error and 
higher-order effects. These small changes can accumulate and eventually result in a gross error. 
To prevent this, formula (44) is modified to 

3.3. Convergence behaviour 

The rate of convergence of the two methods is shown in Figure 3 for Re = 695 and 2082. In both 
cases the shapes of the curves clearly reflect the procedure used. The curves show two distinct 
segments. The abrupt rise in the residual in the late stages of the calculation is caused by requiring 
a more accurate solution (smaller residual) for the vorticity and streamfunction. 

For the calculations carried out here, the first outer iteration scheme converged slightly faster 
than the second. This is shown in Table 111. If the guess for the initial iterate is good, the 
computation times are about equal. For a poor guess, however, the first scheme is 1-5 times faster. 
While we were able to obtain convergence for all cases attempted using scheme 11, this was not the 
case for scheme I. We found the first scheme to be quite sensitive to the initial choice of the 
pressure constant 1. If the value of il is ‘physically unreasonable’, the solution diverges. In order to 
take advantage of the speed afforded by scheme I, we employed the second scheme to calculate 
the value of L for the first few iterations. This value is then taken as an initial guess for the first 
scheme, which is used for the remaining outer iterations. 

The convergence of the solution was also checked by varying the spatial resolution of the mesh. 
This was particularly important at higher values of Re where, owing to the space-centred 
differences, the streamfunction was prone to exhibit ‘wiggles’ if the grid Peclet number 
Pegrid = U *AJK (where A is the interval between two grid points) exceeded 2 in the vicinity of the 

Table 11. Optimal values of a as a function of Re-‘C&’ 

Re-‘C; 20 2 0.2 0.1 0.06 

10-5 10-4 10-3 2x10-3 3 . 3 x i o - ~  
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Figure 3. Comparison of convergence rates for (a) scheme I and (b) scheme I1 

Table 111. Sample comparison of CPU times for schemes I and I1 and 
for the type of initial guess. The parameters are A=2, Pr=0.023, 
Ma = 48, Gr = 76, Co = 4 3  x and Bi = 100. A ‘good guess’ refers 
to the equilibrium shape of the bridge and a ‘poor guess’ specifies the 

surface shape as R(z)  = 1 + 0.006 sin [n(z + l)]. 
~ ~ 

Computation time (s) 

Initial guess Scheme I Scheme I1 

Good 70 72 
Poor 130 332 

disks. The wiggles are present for N ,  x N ,=26  x 61 and are not eliminated until N,=  101. As 
observed by Ryskin and Leal,” an increase in the mesh resolution was found to eliminate this 
problem. We attempted to eliminate the wiggles and avoid the need for mesh refinement by 
employing second- and third-order upwind schemes for convective terms. We found that while 
the wiggles were certainly eliminated for N, x N ,  = 26 x 61 (see Figure 4), the mesh still needed to 
be refined in order to obtain grid convergence. Since the end result was the same, we concluded 
that the centred difference scheme was preferable. A mesh of N, x N,=26 x 51 was found to be 
sufficient for the results presented here with Reynolds numbers in the range O<Re< 1OOOO. 

We have used the method described earlier to examine the influence of various parameters on 
momentum and heat transport and meniscus shape. In addition, a favourable comparison for full 
and half-zones has been made between the results obtained using the combined scheme and those 
of Hyer et d . l l  who employed a finite element scheme. 
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\yW = 1.844~1 0' 

Figure 4. Comparison of results obtained using (a) N,= 61, central finite differences, (b) N ,  =61, third-order upwinding, 
(c) N ,  = 101, central finite differences and (d) N ,  = 101, third-order upwinding 

The effects of varying the temperature difference AT (keeping GrlRe fixed), the Reynolds 
number Re, the Biot number Bi, the aspect ratio A and the Grashof number Gr are presented in 
the following section. 

4. RESULTS 

4.1. Efects of an increase in AT at j ixed GrlRe 

Figure 5 shows the meniscus shape, dimensionless streamlines and isotherms calculated for 
a fluid with the properties of GdsGaSOl2, Pr=4.67, Bi=100, Re=21*4, 107, 215 and 1073 
( M a  = 100,500,1002 and 5010) and Gr/Re=0-025. In all cases the surface tension decreases with 
increasing temperature. This creates a force tangent to the surface which drives the melt towards 
the disks and results in the formation of two toroidal rolls with opposite senses of rotation. The 
gravitational acceleration results in a surface shape that bulges out below z=O and necks in 
above it. This causes an asymmetry in the structure of the two rolls, with the lower roll being more 
intense. 

At Re=21.4 ( M a =  100) heat transport is governed by conduction. In the centre, heat is 
transported through and along the surface (Bi= loo), which results in a significant component of 
the temperature gradient perpendicular to the surface. In the vicinity of the disks the transport of 
heat is mostly through conduction along the surface. At higher values of Re convection is 



FLOW IN A NON-ISOTHERMAL LIQUID BRIDGE 

T-=O 

209 

TUN = 0 T,=O 

Tw = 0.92 Tuu = 0.836 

v w N  = - 1 . 1 5 ~ 1 0 ~  v- = -7.49~103 

TUN = 0 TUN = 0 
(4 (4 

Figure 5. Meniscus shape, streamlines and isotherms calculated for a fluid with the properties of Gd5Ga5OIZ, Pr =4.67, 
Bi=100and Gr/Re=O.O25:(a) Re=21.4,cT=0089, cJ,=2.2x 10-3;(b) Re=107,cT=0.086,c,,=1.9 x IO-’;(c) Re=214.6, 
cr=0.084, cJ,= 1-8 x The temperature and streamfunction contour inter- 

vals are cr and cJ, respectively 
(d) Re= 1073, cT=0.084, cJ,= 1.2 x 

intensified. The flow velocities reach their maximum values at locations intermediate between the 
central portion of the surface and the disks. In the central region of the melt the outward flow 
towards the surface brings cooler melt from the interior and causes a steep temperature gradient 
perpendicular to the surface. Towards the end walls the frequency with which isotherms intersect 
the surface increases. This indicates a steeper temperature gradient parallel to the surface. 

Figure 6 shows the effect of increasing Gr and Re at fixed GrJRe (= 0036) for a fluid with the 
properties of molten silicon. As AT is increased, the increase in buoyancy-driven flow in the upper 
region results in a larger upper cell which extends into the lower half. Note that the ratio of the 
magnitudes of (Clmax to increases as Gr and Re are increased. It is interesting that, even though 
GrJRe is small, if the ratio remains constant but the magnitudes of Gr and Re are increased, the 
buoyancy-driven effect manifests itself more at higher Gr- and Re-values. There is an increase in 
buoyancy effect due to the (vertically) thermally unstable situation in the upper half which acts 
together with the radial temperature gradients throughout the liquid bridge to produce a down- 
ward motion of colder fluid in the region midway between the axis and the surface. As a result, 
buoyancy-driven flow becomes pervasive throughout the system and confines the more intense 
(thermocapillary-driven) cell to a small region in the lower half. 

The effect of increasing AT on the free surface shape is insignificant for these cases. 
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TMN = 0.99- 

vhMx = 6.29~1 O5 
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Figure 6. Meniscus shape, streamlines and isotherms calculated for a fluid with the properties of molten silicon, 
Pr=0.023, Bi=100 and Gr/Re=0.036: (a)Re=139, c,=2.3x (b)Re=1390, c#=1.4x (c)Re=2082, 

c+= 1.1 x c,=O@ for all three cases 

4.2. Efect of Biot number 

The effect of Bi on the liquid bridge shape is slight for the cases examined. The isotherm 
distribution is modified, however, when Bi is increased from 10 to 100 (see Figures 5(b) and 7). In 
the central part of the surface the temperature gradient is almost perpendicular to the surface in 
both cases. For Bi = 100 the gradient is steeper and the temperature in the central region is higher, 
which results in a steeper temperature gradient parallel to the surface near the disks. There is 
a slight decrease in flow intensify for the Bi= 10 case. 
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TMi, = 0 

Figure 7. Effect of Bi (compare with Figure 5) for Bi = 10, Pr = 4.667, Re = 107, C ,  = 70, G = 0.468 and Gr = 2.7. The 
streamfunction and temperature contour intervals are 1.9 x and 0.086 respectively 

4.3. Efect of aspect ratio (A) 

For otherwise identical physical conditions a change in aspect ratio of the liquid bridge has 
a significant effect on the meniscus shape. This is illustrated in Figure 8 by a comparison of liquid 
bridges with A = 2 3  and 3. The shapes are qualitatively similar but the amplitude of the 
deformation from a right circular cylinder is much larger for the higher aspect ratio. For the 
large-aspect-ratio bridge there is a relative decrease in flow intensity in the upper part as the flow 
conforms to the increased curvature of the surface of the longer liquid bridge. The flow intensity 
of the lower cell is greater for the longer aspect ratios and the isotherms exhibit correspondingly 
more distortion. Results obtained for A = 3.2 confirm this trend (note that with a Bond number 
Bo = pgRZ/y ,  = 0 7  the A = 3.2 bridge is close to the stability limit”). 

4.4. Pure thermocapillary $ow 

In the absence of gravity Gr=Bo=O and the flow is driven only by surface tension gradients. 
Figure 9 shows the isotherms and streamlines computed for a fluid with the properties of molten 
silicon for values of Re up to 21 740. We computed cases with Re= 1390,4350, 8695 and 21 740. 
At Re 2 4350 we found secondary cells. There is an increase in secondary flow intensiy at higher 
values of Re (see Figures 9(b) and 9(c)). Even at the higher values of Re the isotherms are only 
slightly distorted. 

For the finite gravity case (Gr = 76) the effects of surface shape and buoyancy-driven flow are 
manifested (see Figure 10). Only two cells are evident in the finite gravity case. The larger cell 
appears to be a combination of a primary thermocapillary cell and a downward flow due to 
buoyancy near the axis, which extends into the central region of the lower half and interacts with 
a secondary flow cells associated with the thermocapillary flow. The primary thermocapillary- 
driven cell in the lower half is considerably smaller in extent than it is for the zero-gravity case. 
A comparison between zero-gravity and finite gravity conditions illustrates the interaction 
between the weaker buoyancy-driven flow, the secondary thermocapillary cells (see Figures 9 
and 10) and the surface shape. 
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Figure 8. Effect of aspect ratio: (a) A = 2.5; (b) A = 3; Bi = 100, Bo = 0.7, Pr = 4.667, Re = 107, C; * = 70, G = 0.468, Gr = 2.7. 
The streamfunction contour intervals are 1.2 x and 2.3 x for (a) and (b) respectively and the temperature 

contour interval is 0.087 for both cases 

5. CONCLUSIONS 

Steady solutions to the free boundary problem for a non-isothermal liquid bridge have been 
obtained using a Picard-type iterative scheme with a semi-implicit space-centred finite difference 
scheme. The method was applied to a variety of problems with Reynolds numbers in the range 
0 < Re < 22000 and for Pradtl numbers of 0.023 and 4.67. The method was found to perform well 
for this range of parameters examined and compared well with results obtained for buoyancy- 
driven and surface-tension-driven flow using a finite element method. At high Re we found that 
the solution was sensitive to the spatial resolution and that a larger number of grid points were 
necessary in order to avoid ‘wiggles’ in the solution. For Re < loo00 we found N ,  x N, = 26 x 51 
points to be sufficient, but required up to 101 points in the z-direction for Re= 21 740. While it 
was possible to remove the wiggles using upwind differences, the mesh refinement was still 
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Figure 9. Meniscus shape, streamlines and isotherms calculated for a fluid with the properties of molten silicon, 
Pr=0.023, Bi= 100, Gr=O and &=(a) 1390, (b) 8695 and (c) 21740. The streamfunction contour intervals are 7.7 x 
3.7 x for (a), (b) and (c) respectively and the temperature contour interval is @087 for all three cases and 2 5  x 

necessary in order to obtain grid convergence. Thus no advantage was obtained by using upwind 
differencing. 

While the parametric study is by no means exhaustive, the results indicate some interesting 
trends. Perhaps the most interesting behaviour is the response to an increase in the effective 
maximum temperature difference AT. It was found that for a non-zero Grashof number an 
increase in AT caused an increase in intensity of the cell in the lower half of the bridge. For the 
low-Prandtl-number case it was found that at higher values of AT the spatial extent of the lower 
cell actualy decreased as the less intense upper cell penetrated into the lower part. This can be 
explained by the increasing importance of radial temperature gradients in driving buoyant flow as 
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Figure 10. Meniscus shape, streamlines and isotherms calculated for a fluid with the properties of molten silicon, 
Pr=0.023, Bi= 100, Gr=76 and Re=8695. The streamfunction contour interval is 4.6 x and the temperature 

contour interval is 0.087 

AT is increased. As expected from the results of previous work, the effect of changing the aspect 
ratio was also seen to significantly affect the flow behaviour. For non-zero gravity the increase in 
convexity of the lower portion of the larger-aspect-ratio bridge has a pronounced effect on the 
flow pattern, which is more intense for the longer liquid bridge. This increase in flow intensity 
appears to occur as a result of a decrease in the form drag of the surface. A comparison between 
the difference in flow intensity between the upper and lower halves reveals that the difference 
increases with increasing A. The form drag in the upper half increases as the magnitude of the 
negative curvature increases. This slows the flow in the upper half relative to the lower half of the 
bridge. 
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